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The evaluation of kinetic parameters from chemical reaction curves implies data- 
fitting procedures. Direct search methods are studied to minimize the Chi Square 
Function with respect to the activation energy and pre-exponential factor. The geomet- 
rical shape of the Chi Square Function can be related to the kinetic compensation effect 
as discussed in the literature. The minimization with respect to the pre-exponential factor 
can be solved analytically if the Chi Square Function includes integrated forms of the 
reaction mechanisms. 

The investigation of chemical reactions under programmed temperature varia- 
tions allows the evaluation of the reaction parameters (see e.g. [1] and references 
cited therein). Their calculation depends on the solution of the least squares fit 
problem. Commonly used methods involve exact or approximated linear relations 
between theoretical and experimental data. The possible linear regression analysis 
is the corresponding analytical solution of the fit problem. The facilities of com- 
puters, which are now used to an increasing extent [ 1 - 7 ] ,  allow the numerical 
minimization of the Chi Square Function. 

In this paper the geometrical shape of the Chi Square Function is studied with 
respect to the activation energy and pre-exponential factor. In addition some direct 
search methods are tested. 

Kinetic equations 

In general, solid-state reactions can be described in the following form, if sub- 
stitution is made to account for linear heating [1, 8, 9]: 

dc k(__~) f(c) 
dT - (1) 

c = reactant not yet converted 
f(c) = mathematical form of reaction mechanism 
B = heating rate 
k(T) = usually Arrhenius rate constant 

k(T) = Ze -E/(RT) 
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290 EISENREICH: KINETIC COMPENSATION EFFECT 

E = activation energy 
Z = pre-exponential factor. 

The integrated form of (1) is given by (2) [1, 8 - 1 0 ] :  

Z 
g(c) = - ~ S(T, E) 

f de g(c) = f(c) (2) 

S(T, E) = i e-E/(RT) dT 
/ 

S(T, E) can be obtained by numerical integration or by an asymptotic expansion 
(see e.g. [1, 10, 11]). 

By inverting (2), one can obtain an expression for c: 

c =  F S(T ,E . (3) 

Experimental reaction curves (e.g. TG curves) are directly related to (3). The dif- 
ferential curves are proportional to (1) if c is substituted by (3). Necessary correc- 
tions due to the experimental set-up have to be carried out in a separate procedure 
[1, 5, 12]. 

Least squares fit 

A theoretical curve h(x, a, b, . . . )  is fitted to N data points Yi, xi by the minimi- 
zation of the so-called Chi Square Function Q with respect to the fitting parameters 
a , b . . .  

N 

Q(a, b . . . .  ) = ~ (Yi - h(xi, a, b, . . .))2Wi (4) 
i=1 

The weighting factors W i are set equal to 1 in the further discussion. In the case of 
reaction curves, Yl and xi correspond to the digitized values c i and T i of  an experi- 
mental curve - a TG curve, for example - and h(x, a, b, . . . )  corresponds to 
(3). For differential curves, Yi has to be substituted by the digitized and normalized 
measured values, h(x, a, b . . . .  ) is then given by (1), with c substituted by (3), 
however. 

The minimum of Q(a, b, . . . )  can be found analytically only if It(x, a, b . . . .  ) 
is a linear function of a, b etc. As (1) and (3) are not linear with respect to the rel- 
evant fitting parameters E and Z, the problem has to be solved numerically. 

A simplification can be obtained if (2) is used for the formation of Q: 

Q(E, Z) = _ _  g(ci) + ~-S(Ti,  E)  (5) 
i=1 
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h(T i, E, Z) is linear with respect to Z in (5). Hence the relative minimum of Q(E, Z) 
can be found after differentiation in an analytical procedure: 

N 

S(Ti, E)g(c i) 
Z i = 1  

- (6 )  
B Y 

Z S'~(Ti, E) 
i = l  

Thus, the number of fitting parameters to be calculated numerically is reduced by 
one. 

Besides E and Z, the least squares fit can be extended to other parameters in- 
volved in g(c). 

G e o m e t r i c a l  s h a p e  o f  the  C h i  S q u a r e  F u n c t i o n  

The minimization of (4) was carried out by applying different direct search 
methods for given reaction mechanisms. Test functions of  the type (3) and (1), and 
experimental TG and DTA curves were studied. 

The simplest approach to find the minimum of (4) is to form a two-dimensional 
grid with E and Z as coordinates, and to compare the values of Q(E, Z). In addi- 
tion, the Chi Square Function can be mapped in order to study its geometrical 
shape. 

Applied to test functions, the minimum was found at the exact values (Emin, Zmm ) 
with Q equal to 0. Figure 1 represents a typical example of a mapped Chi Square 
Function. Q(E, Z) consists of  a narrow elongated valley. The projection of the 
valley bottom on the E - log Z plane is a straight line. The parameters of this 
line are listed in Table 1. The slow variation of Q along this valley bot tom is shown 
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Fig. 1. Geometr ica l  representat ion of  a Chi Square Funct ion  of  a test funct ion a reaction curve 
of order 1 (E/R = 20000, log Z = 17, h(T, Z,E) = c(T) = exp(--ZS(E, T)/B)) 
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in Fig. 2. The increase in direction of  higher values o f  the reaction parameters is 
quite small. A steep rise, in contrast, is observed if one parameter  is kept constant.  
In  this case Q(E, Z) arrives at plateaus on each side o f  the valley. The qualitative 
behavior of  Q(E, Z) is independent o f  the reaction mechanism and is similar for  
differential curves. An  example of  a Chi Square Funct ion o f  this type o f  curve is 
depicted in Fig. 3. 

The consequences o f  experimental curves are also evident in Fig. 3 because an 
experimental D T A  curve (DuPont  990 Thermal  Analyzer) was studied. Q(Emiu, 
Zmin) is no longer 0. The increase of  Q(E, Z) along the relative minimum is essen- 
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Fig. 2. A cut through the Chi Square Function in the direction of the valley bottom (for test 
function see Fig. 1) 

tially slower than for test functions. The reaction investigated is the decomposit ion 
o f  nitrocellulose in double-base propellants. The obtained values o f  the minimum 
are 45.2 kcal/mole and 18.7 for E and log Z, respectively. These values agree well 
with those published in the literature [ 1 3 -  15]. The parameters o f  the straight line 
o f  the projection of  the valley bo t tom on the E - log Z plane are listed in Table 1. 
Further  results involving this method are published elsewhere [10, 16]. 

Table 1 

Parameters of the relative minima 

Test function (see Fig. 1) 
Test function use of (6) 
Exp. DTA curve (Fig. 3) 
Exp. TG curve (*) 
Exp. TG curve (**) 

Calculated according 
to Nikolaev  et al. 

1.003 10 -a 
1.003 10 -a 
0.895 10 .3 
5.727 10-a 
5.727 10 -~ 

-- 3.052 
3.052 
1.496 
3.184 
3.184 

Relat ive m i n i m u m  o f  
Chi Square Funct ion  

1.029 10 -3 
0.996 10 -3 
0.9075 10 -3 
6.065 10 -~ 
5.788 10 -~ 

(*) Oxidation of activated charcoal [16], Emtn = 45.2 kcal/mole, log g m t  n = 9.78 
(**) The same reaction fitted by use of (6) 

--3.589 
-- 2.921 
--1.816 
- -  3.884 
-- 3.302 
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A fast and rapid converging direct search method was introduced by PoweIt [I7]. 
Applying it to the same test functions and experimental curves, the fit parameters 
agreed well with those obtained above. The accuracy of agreement naturally de- 
pends on the width of the grid mesh of the method described first. However, the 
computing time was reduced by several orders of magnitude. If, especially, more 
parameters have to be evaluated, this method should be preferred. A problem with 
respect to initial values arises from the plateaus of  the Chi Square Function. In the 
case of values E and Z on these plateaus, the corresponding reaction intervals are 
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F i g .  3. G e o m e t r i c a l  r e p r e s e n t a t i o n  o f  a ChJ S q u a r e  F u n c t i o n  o f  an  e x p e r i m e n t a l  D T A  c u r v e  

( d e c o m p o s k i o n  o f  n i t r o c e i i u l o s e  in a d o u b I e  b a s e  p r o p e I I a n t  a s  r e f e r r e d  t o  in t h e  t ex t  h (T,  Z ,  E ) ~  
-= Z /B  e x p ( - -  E/(RT)) e x p ( - -  ZS(E,  T)/B)) 

completely outside the reaction interval of the curve to be fitted. Then, Q(E, Z) is 
given by N ( 1 -  ci) 2 or Nci 2 for reaction curves, and Nq~ for differential curves 
(qi experimental values), and does not vary with altered parameters. Thus, both 
initial values have to be selected carefully to have an initial reaction interval which 
overlaps the reaction interval of the curve to be fitted. Taking into account the 
special geometrical shape of the Chi Square Function, the valley bottom can be 
found in a first step. Then, further iteration can take place along the straight line 
of the valley bottom, if its direction is obtained in a second step. In the case of 
reaction curves, (6) can be used. For arbitrarily, but reasonably chosen parameters 
E, the corresponding parameter Z is calculated, resulting in an initial reaction in- 
terval still overlapping the curve to be fitted. 

Applying (6) for the least squares fit, approximately the same reaction parame- 
ters were obtained. A plot of log Z versus E of (6) resulted in straight lines with 
high correlation coefficients (r > 0.999). Small differences of the parameters of  the 
straight line (see Table 1) can be explained by the different weighting of data points 
if 9(g) is used instead of c i to form the Chi Square Function. Equation (6) need 
not necessarily coincide with the valley bottom of the least squares fit, as it is only 
the relative minimum with respect to Z. 
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As an experimental example, the oxidation of activated charcoal, recorded in a 
TG experiment, was studied. The reaction parameters are 45.2 kcal/mol and 9.78 
for E and log Z. They agree well with those obtained by the application of the 
method described first, which are 46.8 kcal/mol and 10.27, respectively [16]. 

Kinetic compensation effect 

The kinetic compensation effect was recently reinvestigated [18-22] .  The results 
obtained from the shape of the Chi Square Function reveal a pure mathematical 
or numerical influence of the Arrhenius rate constant. However, they do not in- 
dicate any physical nature of the effect. 

The relative minimum of the Chi Square Function can be represented by a linear 
equation, just as that of the kinetic compensation effect: 

log Z = b + aE/R. (7) 

Also, the calculation of the relative minimum with respect to Z according to (6) 
leads to the same relation of the fitting parameters. 

Especially the Chi Square Function of the experimental curves increases very 
slowly, if the fitting parameters are varied according to the valley bottom of the 
Chi Square Function. This means that a wide range of theoretical reaction curves 
fit the curve under investigation within the experimental error. However, their pa- 
rameters E and Z have to satisfy (7). All these curves have similar reaction inter- 
vals. Curves with higher values of E are steeper and those with lower values are 
flatter. Curves with one parameter of the minimum and the other altered are shifted 
parallel to the reference curve. Then, the Chi Square Function increases rapidly. 
According to the approach of Nikolaev et al. [18, 19] the parameters a and b are" 

b = log EB/(RT 2) a = log e 1/T v (8) 

Tp = peak temperature of differential curves or point of  inflexion of reaction curves 
The parameters a and b obtained from (8) by setting E equal to Emin are listed 

together with those of  the least squares fit in Table 1. The parameters approximate- 
ly agree. The value of b from (8) corresponds to the reaction rate at the peak 
temperature. The parameters of the least squares fit are related in the same way 
via temperature Tm: 

T m =  log e 1/a b = log ( Z m i  n e -rmln/(RTm)) (9) 

T m seems to be a mean temperature of the reaction interval and b is the logarithm 
of the corresponding reaction rate. The formation of the mean values is not evi- 
dent, but depends on the weighting of the data points. T m is lower than Tp if it is 
obtained from a fit according to (4), and is higher if (6) is used. 
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Frequent ly ,  E and Z are calculated from k(T) using an Arrhenius  plot, which 
implies a l inear regression analysis. The rate constants  ki are obta ined either f rom 
isothermal measurement  or from non- iso thermal  experiments [ 2 - 6 ] .  

The relative min ima  with respect to E and In Z are equat ions of the type (7): 

Tq N N 
In Z = ( ~  ( I / T  i [n ki) + ~ 1/T 2 E / R ) / ~  1 /T  i (10)  

i -1  i=l  i -1  
N N 

in Z = (• I n k  i + ~ '  1/T i E/R)/N. (11) 
i=l  i -1  

Sometimes isothermal experiments and often non-isothermal  experiments are 
carried out within a temperature interval which is small compared to the actual  
temperature  (e.g. mean temperature of the react ion interval). In  this case the 
straight lines (10) and (11) approximately coincide and,  in addit ion,  approximately 
coincide with the projection of the valley bo t tom of the Chi Square Funct ion .  
Small experimental  errors in the measurement  of k~ and T i can be the reason for 
a considerable shift of the point  of intersection of (10) and (11) which defines 

Emin and In Zmi n. 
A similar situation, but  more complex, is also encountered for the direct fit of 

reaction curves and differential curves, as discussed above. In  this case the integrals 
of the Arrhenius  rate constant  are involved, and the relative min ima  are only ap- 
proximately straight lines. 
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R~suM~ --  L '6va lua t ion  des  pa ram6t re s  c in6t iques  ob tenus  A par t i r  des  courbes  des r6act ions  
ch imiques  exige de p roc6dures  d ' a j u s t e m e n t  de donn6es .  On  a 6tudi6 des m6 thodes  de recherche  
directe p e u r  min imal i se r  la fonc t ion  de chi car t6  pa r  r appo r t  ~ l '6nergie d ' ac t iva t ion  et au  fac- 
teur  pr6-exponent ie l .  L a  fo rme  g6omet r ique  de  la fonc t ion  de chi carr6 peut  ~tre reli6e ~t 
l 'effet de c o m p e n s a t i o n  cin6t ique c o m m e  il est  d iscut6 dans  la l i t t6rature.  La  min imal i sa t ion  pa r  
r appo r t  a u  fac teur  pr6-exponent ie l  est r6solue pa r  des  m6 thodes  ana ly t iques ,  p o u r v u  que  la 
fonc t ion  de chi carr6 c o m p r e n n e  des fo rmes  int6gr6es des m6can i smes  de r6action.  

Z U S A M M E N F A S S U N G  - -  Die B e r e c h n u n g  kinet i scher  P a r a m e t e r  aus  M e s s k u r v e n  v o m  Ver lauf  
chemische r  R e a k t i o n e n  erfolgt  a u f g r u n d  von  A n p a s s u n g s v e r f a h r e n .  In  dieser Arbei t  werden  
M e t h o d e n  un te r such t ,  bei denen  die F i t -Pa rame te r ,  i n sbesondere  Akt iv ie rungsenerg ie  u n d  
Vorfak tor ,  direkt  vari ier t  werden.  D a s  M i n i m u m  der C h i - Q u a d r a t - F u n k t i o n  k a n n  im Hinbl ick  
au f  den Vor fak to r  ana ly t i sch  ge funden  werden ,  wenn  zu ihrer  Bi ldung  die integrier te  F o r m  des 
R e a k t i o n s m e c h a n i s m u s  ve rwende t  wird. Die  ~eomet r i sche  F o r m  tier C h i - Q u a d r a t - F u n k t i o n  
J~il3t sich z u m  kinet i schen K o m p e n s a t i o n s e f f e k t  in Bez iehung  setzen. 

Pe3roMe --- Bbi~eneHrte K~tHeTr~fecKHx napaMeTpoB I43 KpnBblX Xr~MHqecKo~ peardlrm 03HaqaeT 
MeTO~bl IIO~FOHKI/I ~aHHI,~X. I/I3y~eHbI rlpaMble HO~ICKOBbIe MeTO~bI, ~TO6bI CBeCTrt ~IO MHHH ~ 
MyMa TqH KBajlpaTHytO ~yHKmLrO no OTHOJ.HeH/,IIO K aneprnn  aKTHBaIImI H npe~laKcnoHeHarI- 
aYlbnoro qbaKTopa. FeoMeTprtqecKH~ BH~ 3TO~ qbyHKIII, II, I MOmeT 6IalTb CBa3aH c rHneT~tqecKnM 
KOMI'teHCaI2HOHHblM 3~eKTOM, KaK aTO 06cy~Aeno a ~nTepaType, tlTO KacaeTca npe~aKCnO- 
Henl~na~bHoro d~aKTopa, ~OBO,/~Ka ero )Io MHHHMaJ/bHOFO 3navIeHnn MO~eT 6I~IT/~ pemeHa aHa- 
Y/HTHqeCK~I, ec.rlH qI, I KBaztparnaa ~ynKm~a BKYllOtlaeT I4nTerpa.rlbn/~ie qbopM/,l MexaHvI3MOB peaK- 
/IHH. 
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