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DIRECT LEAST SQUARES FIT OF CHEMICAL REACTION CURVES
AND ITS RELATION TO THE KINETIC COMPENSATION EFFECT
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The evaluation of kinetic parameters from chemical reaction curves implies data-
fitting procedures. Direct search methods are studied to minimize the Chi Square
Function with respect to the activation energy and pre-exponential factor. The geomet-
rical shape of the Chi Square Function can be related to the kinetic compensation effect
as discussed in the literature. The minimization with respect to the pre-exponential factor
can be solved analytically if the Chi Square Function includes integrated forms of the
reaction mechanisms.

The investigation of chemical reactions under programmed temperature varia-
tions allows the evaluation of the reaction parameters (see e.g. [1] and references
cited therein). Their calculation depends on the solution of the least squares fit
problem. Commonly used methods involve exact or approximated linear relations
between theoretical and experimental data. The possible linear regression analysis
is the corresponding analytical solution of the fit problem. The facilities of com-
puters, which are now used to an increasing extent [[ —7], allow the numerical
minimization of the Chi Square Function.

In this paper the geometrical shape of the Chi Square Function is studied with
respect to the activation energy and pre-exponential factor. In addition some direct
search methods are tested.

Kinetic equations

In general, solid-state reactions can be described in the following form, if sub-
stitution is made to account for linear heating [1, 8, 9]:

de k(T)

ar - Tf (o) ¢y
c = reactant not yet converted
f(¢) = mathematical form of reaction mechanism

B = heating rate
k(T) = usually Arrhenius rate constant

K(T) = Ze EI®D
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E = activation energy
Z = pre-exponential factor.

The integrated form of (1) is given by (2) [1, 8 —10]:

o0 = ~ 2 S, )
*de
() = J o ®

S(T,E) = J e EIRD 4T

S(T, E) can be obtained by numerical integration or by an asymptotic expansion
(see e.g. [1, 10, 11]).
By inverting (2), one can obtain an expression for ¢:

¢c=F (% S(T, E)| . 3)

Experimental reaction curves (e.g. TG curves) are directly related to (3). The dif-
ferential curves are proportional to (1) if ¢ is substituted by (3). Necessary correc-
tions due to the experimental set-up have to be carried out in a separate procedure
(1, 5, 12].

Least squares fit

A theoretical curve A(x, a, b, .. .) is fitted to N data points y;, x; by the minimi-
zation of the so-called Chi Square Function Q with respect to the fitting parameters
ab...

N
Oa, b, ..) = ; (On — Mxi,a, b, .. )PW; @

The weighting factors W; are set equal to 1 in the further discussion. In the case of
reaction curves, y; and x; correspond to the digitized values c; and 7} of an experi-
mental curve — a TG curve, for example — and A(x, a, b, ...) corresponds to
(3). For differential curves, y; has to be substituted by the digitized and normalized
measured values. A(x, a, b, ...) is then given by (1), with c substituted by (3),
however.

The minimum of Q(a, b, . ..) can be found analytically only if A(x, a, b, ...)
is a linear function of a, b etc. As (1)and (3) are not linear with respect to the rel-
evant fitting parameters E and Z, the problem has to be solved numerically.

A simplification can be obtained if (2) is used for the formation of Q:

N Z 2
Q(Es Z) = 2 g(ci) + _B'S(Tv E) (5)

i=1
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(T, E, Z) is linear with respect to Z in (5). Hence the relative minimum of Q(E, Z)
can be found after differentiation in an analytical procedure:

N

, X S@.Be

o 1N1 o . (6)
PIERGE

Thus, the number of fitting parameters to be calculated numerically is reduced by
one.

Besides E and Z, the least squares fit can be extended to other parameters in-
volved in g(c).

Geometrical shape of the Chi Square Function

The minimization of (4) was carried out by applying different direct search
methods for given reaction mechanisms. Test functions of the type (3) and (1), and
experimental TG and DTA curves were studied.

The simplest approach to find the minimum of (4) is to form a two-dimensional
grid with F and Z as coordinates, and to compare the values of Q(E, Z). In addi-
tion, the Chi Square Function can be mapped in order to study its geometrical
shape.

Applied to test functions, the minimum was found at the exact values (£,,;,, Zm.0)
with Q equal to 0. Figure ! represents a typical example of a mapped Chi Square
Function. Q(E, Z) consists of a narrow elongated valley. The projection of the
valley bottom on the E — log Z plane is a straight line. The parameters of this
line are listed in Table 1. The slow variation of Q along this valley bottom is shown

x10% E/R | K

Fig. 1. Geometrical representation of a Chi Square Function of a test function a reaction curve
of order 1 (E/R = 20000, log Z = 17, i(T, Z, E) = ¢(T) = exp(— ZS(E, T)/B))
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in Fig. 2. The increase in direction of higher values of the reaction parameters is
quite small. A steep rise, in contrast, is observed if one parameter is kept constant.
In this case Q(E, Z) arrives at plateaus on each side of the valley. The qualitative
behavior of Q(E, Z) is independent of the reaction mechanism and is similar for
differential curves. An example of a Chi Square Function of this type of curve is
depicted in Fig. 3.

The consequences of experimental curves are also evident in Fig. 3 because an
experimental DTA curve (DuPont 990 Thermal Analyzer) was studied. Q(E,;,,
Z.;n) 1s no longer 0. The increase of Q(E, Z) along the relative minimum is essen-
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Fig. 2. A cut through the Chi Square Function in the direction of the valley bottom (for test
function see Fig. 1)

tially slower than for test functions. The reaction investigated is the decomposition
of nitrocellulose in double-base propellants. The obtained values of the minimum
are 45.2 kcal/mole and 18.7 for E and log Z, respectively. These values agree well
with those published in the literature [13 —15]. The parameters of the straight line
of the projection of the valley bottom on the E — log Z plane are listed in Table 1.
Further results involving this method are published elsewhere [10, 16].

Table 1

Parameters of the relative minima

Calculated according Relative minimum of
to Nikolaev et al. Chi Square Function
a ' b a b
I

Test function (see Fig. 1) 1.003 10-3 —3.052 1.029 10-3 —3.589
Test function use of (6) 1.003 103 —3.052 0.996 10-3 —2.921
Exp. DTA curve (Fig. 3) 0.895 103 —1.496 0.9075 103 —1.816
Exp. TG curve (*) 5.727 10— —3.184 6.065 10— —3.884
Exp. TG curve (**) 5.727 10-¢ —3.184 5.788 10—¢ —3.302

(*) Oxidation of activated charcoal [16], E,, = 45.2 kcal/mole, log Z,;, = 9.78
(**) The same reaction fitted by use of (6)
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A fast and rapid converging direct search method was introduced by Powell [17].
Applying it to the same test functions and experimental curves, the fit parameters
agreed well with those obtained above. The accuracy of agreement naturally de-
pends on the width of the grid mesh of the method described first. However, the
computing time was reduced by several orders of magnitude. If, especially, more
parameters have to be evaluated, this method should be preferred. A problem with
respect to initial values arises from the plateaus of the Chi Square Function. In the
case of values £ and Z on these plateaus, the corresponding reaction intervals are
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Fig. 3. Geometrical representation of a Chi Square Function of an experimental DTA curve
{decomposition of nitrocellulose in a2 double base propellant as referred to in the text 4T, Z, E)=
= Z/B exp(— E/(RT)) exp(— ZS(E, T)/B))

completely outside the reaction interval of the curve to be fitted. Then, Q(E, Z) is
given by N(1'— ¢)? or N¢? for reaction curves, and Ng? for differential curves
(q; experimental values), and does not vary with altered parameters. Thus, both
initial values have to be selected carefully to have an initial reaction interval which
overlaps the reaction interval of the curve to be fitted. Taking into account the
special geometrical shape of the Chi Square Function, the valley bottom can be
found in a first step. Then, further iteration can take place along the straight line
of the valley bottom, if its direction is obtained in a second step. In the case of
reaction curves, (6) can be used. For arbitrarily, but reasonably chosen parameters
E, the corresponding parameter Z is calculated, resulting in an initial reaction in-
terval still overlapping the curve to be fitted.

Applying (6) for the least squares fit, approximately the same reaction parame-
ters were obtained. A plot of log Z versus E of (6) resulted in straight lines with
high correlation coefficients (» > 0.999). Small differences of the parameters of the
straight line (see Table 1) can be explained by the different weighting of data points
if g(c;) is used-instead of c; to-form the Chi Square Function. Equation (6) need

not necessarily coincide with the valley bottom of the least squares fit, as it is only
the relative minimum with respect to Z.
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As an experimental example, the oxidation of activated charcoal, recorded in a
TG experiment, was studied. The reaction parameters are 45.2 kcal/mol and 9.78
for E and log Z. They agree well with those obtained by the application of the
method described first, which are 46.8 kcal/mol and 10.27, respectively [16].

Kinetic compensation effect

The kinetic compensation effect was recently reinvestigated [18 —22]. The results
obtained from the shape of the Chi Square Function reveal a pure mathematical
or numerical influence of the Arrhenius rate constant. However, they do not in-
dicate any physical nature of the effect.

The relative minimum of the Chi Square Function can be represented by a linear
equation, just as that of the kinetic compensation effect:

log Z = b + aE/R. )

Also, the calculation of the relative minimum with respect to Z according to (6)
leads to the same relation of the fitting parameters.

Especially the Chi Square Function of the experimental curves increases very
slowly, if the fitting parameters are varied according to the valley bottom of the
Chi Square Function. This means that a wide range of theoretical reaction curves
fit the curve under investigation within the experimental error. However, their pa-
rameters E and Z have to satisfy (7). All these curves have similar reaction inter-
vals. Curves with higher values of E are steeper and those with lower values are
flatter. Curves with one parameter of the minimum and the other altered are shifted
parallel to the reference curve. Then, the Chi Square Function increases rapidly.
According to the approach of Nikolaev et al. [18, 19] the parameters a and b are:

b = log EB/(RT?) a=logel/T, (8)

T, = peak temperature of differential curves or point of inflexion of reaction curves

The parameters a and b obtained from (8) by setting E equal to E;, are listed
together with those of the least squares fit in Table 1. The parameters approximate-
ly agree. The value of b from (8) corresponds to the reaction rate at the peak
temperature. The parameters of the least squares fit are related in the same way
via temperature 77,:

T, =logel/a b = log (Z,,;, e~ Enin/RTm) )
T,, seems to be a mean temperature of the reaction interval and b is the logarithm
of the corresponding reaction rate. The formation of the mean values is not evi-

dent, but depends on the weighting of the data points. T}, is lower than T, if it is
obtained from a fit according to (4), and is higher if (6) is used. ‘
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Frequently, E and Z are calculated from k(T) using an Arrhenius plot, which
implies a linear regression analysis. The rate constants k; are obtained either from
isothermal measurement or from non-isothermal experiments [2—6].

The relative minima with respect to £ and In Z are equations of the type (7):

InZ = (i (/T;1n k) + Z 1y71? E/R)/i /T, (10)
N
InZ = (i Ink; + Z 1/T; E/R)/N . (11)

Sometimes isothermal experiments and often non-isothermal experiments are
carried out within a temperature interval which is small compared to the actual
temperature (e.g. mean temperature of the reaction interval). In this case the
straight lines (10) and (11) approximately coincide and, in addition, approximately
coincide with the projection of the valley bottom of the Chi Square Function.
Small experimental errors in the measurement of k; and T can be the reason for
a considerable shift of the point of intersection of (10) and (11) which defines
E_,and In Z ;.

A similar situation, but more complex, is also encountered for the direct fit of
reaction curves and differential curves, as discussed above. In this case the integrals
of the Arrhenius rate constant are involved, and the relative minima are only ap-
proximately straight lines.
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REsumE — L’évaluation des parametres cinétigues obtenus a partir des courbes des réactions
chimiques exige de procédures d’ajustement de données. On a étudié des méthodes de recherche
directe pour minimaliser la fonction de chi carré par rapport a I’énergie d’activation et au fac-
teur pré-exponentiel. La forme géometrique de la fonction de chi carré peut étre reliée a
I’effet de compensation cinétique comme il est discuté dans la littérature. La minimalisation par
rapport au facteur pré-exponentiel est résolue par des méthodes analytiques, pourvu que la
fonction de chi carré comprenne des formes intégrées des mécanismes de réaction.

ZUsAMMENFASSUNG — Die Berechnung kinetischer Parameter aus Messkurven vom Verlauf
chemischer Reaktionen erfolgt aufgrund von Anpassungsverfahren. In dieser Arbeit werden
Methoden untersucht, bei denen die Fit-Parameter, insbesondere Aktivierungsenergie und
Vorfaktor, direkt variiert werden. Das Minimum der Chi-Quadrat-Funktion kann im Hinblick
auf den Vorfaktor analytisch gefunden werden, wenn zu ihrer Bildung die integrierte Form des
Reaktionsmechanismus verwendet wird. Die geometrische Form der Chi-Quadrat-Funktion
148t sich zum kinetischen Kompensationseffekt in Bezichung setzen.

Pe3ioMe — BrlaencHHE KMHETHYECKHX MAPAMETPOB M3 KPHBHIX XMMHUYECKOM PEaxiuu O3HAYAET
METOIbI TIOArOHKM JAHHBLIX, V3yyeHB! npsiMEele TOMCKOBBIE METOABI, YTOOBI CBECTH OO MUHU-
myma Un Ksagpatayro QYHKIUIO IO OTHOIICHHIO K 3HEPIMH AKTHBALAM W IIPEel3KCHOHEHIH~
anbpHOrO (haxTopa. I'eomMeTpudeckuit BUL 3TOH QYHKIME MOXET OBITH CBS3aH C KHHETHYECKHM
KOMIICHCAIHOHHBIM 3Q(EKTOM, Kak 3T0 OOGCYkIACHO B IHTepaType. UTo KacaeTcs MpesKCIo-
HEHLHANBHOTO (PaKTOPa, AOBOAKA €T0 A0 MEHHMAJBHOTO 3HAYEHHS MOXET OBITH pellleHa aHa-
yTrdeckd, ecrm Yu KpanpatHas $yHKIMS BKIIOYaeT HHTEIPABHEIEC (JOPMEBI MEXaHA3MOB peaK-
uun.

J Theimal Anal. 19, 1980



